×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14788v1 Announce Type: new
Abstract: This note discusses a method for computing the energy spectra of quantum field theory utilizing digital quantum simulation. A quantum algorithm, called coherent imaging spectroscopy, quenches the vacuum with a time-oscillating perturbation and then reads off the excited energy levels from the loss in the vacuum-to-vacuum probability following the quench. As a practical demonstration, we apply this algorithm to the (1+1)-dimensional quantum electrodynamics with a topological term known as the Schwinger model, where the conventional Monte Carlo approach is practically inaccessible. In particular, on a classical simulator, we prepare the vacuum of the Schwinger model on a lattice by adiabatic state preparation and then apply various types of quenches to the approximate vacuum through Suzuki-Trotter time evolution. We discuss the dependence of the simulation results on the specific types of quenches and introduce various consistency checks, including the exact diagonalization and the continuum limit extrapolation. The estimation of the computational complexity required to obtain physically reasonable results implies that the method is likely efficient in the coming era of early fault-tolerant quantum computers.

Click here to read this post out
ID: 820590; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: