×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14551v1 Announce Type: new
Abstract: We use Fourier Neural Operators (FNOs) to study the relation between the modulus and phase of amplitudes in $2\to 2$ elastic scattering at fixed energies. Unlike previous approaches, we do not employ the integral relation imposed by unitarity, but instead train FNOs to discover it from many samples of amplitudes with finite partial wave expansions. When trained only on true samples, the FNO correctly predicts (unique or ambiguous) phases of amplitudes with infinite partial wave expansions. When also trained on false samples, it can rate the quality of its prediction by producing a true/false classifying index. We observe that the value of this index is strongly correlated with the violation of the unitarity constraint for the predicted phase, and present examples where it delineates the boundary between allowed and disallowed profiles of the modulus. Our application of FNOs is unconventional: it involves a simultaneous regression-classification task and emphasizes the role of statistics in ensembles of NOs. We comment on the merits and limitations of the approach and its potential as a new methodology in Theoretical Physics.

Click here to read this post out
ID: 820674; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: