×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14594v1 Announce Type: new
Abstract: The relay channel, consisting of a source-destination pair and a relay, is a fundamental component of cooperative communications. While the capacity of a general relay channel remains unknown, various relaying strategies, including compress-and-forward (CF), have been proposed. For CF, given the correlated signals at the relay and destination, distributed compression techniques, such as Wyner-Ziv coding, can be harnessed to utilize the relay-to-destination link more efficiently. In light of the recent advancements in neural network-based distributed compression, we revisit the relay channel problem, where we integrate a learned one-shot Wyner--Ziv compressor into a primitive relay channel with a finite-capacity and orthogonal (or out-of-band) relay-to-destination link. The resulting neural CF scheme demonstrates that our task-oriented compressor recovers "binning" of the quantized indices at the relay, mimicking the optimal asymptotic CF strategy, although no structure exploiting the knowledge of source statistics was imposed into the design. We show that the proposed neural CF scheme, employing finite order modulation, operates closely to the capacity of a primitive relay channel that assumes a Gaussian codebook. Our learned compressor provides the first proof-of-concept work toward a practical neural CF relaying scheme.

Click here to read this post out
ID: 820758; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: