×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14842v1 Announce Type: new
Abstract: The superiority of stochastic symplectic methods over non-symplectic counterparts has been verified by plenty of numerical experiments, especially in capturing the asymptotic behaviour of the underlying solution process. How can one theoretically explain this superiority? This paper gives an answer to this problem from the perspective of the law of iterated logarithm, taking the linear stochastic Hamiltonian system in Hilbert space as a test model. The main contribution is twofold. First, by fully utilizing the time-change theorem for martingales and the Borell--TIS inequality, we prove that the upper limit of the exact solution with a specific scaling function almost surely equals some non-zero constant, thus confirming the validity of the law of iterated logarithm. Second, we prove that stochastic symplectic fully discrete methods asymptotically preserve the law of iterated logarithm, but non-symplectic ones do not. This reveals the good ability of stochastic symplectic methods in characterizing the almost sure asymptotic growth of the utmost fluctuation of the underlying solution process. Applications of our results to the linear stochastic oscillator and the linear stochastic Schrodinger equation are also presented.

Click here to read this post out
ID: 820803; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: