×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.15200v1 Announce Type: new
Abstract: In this note, we show how certain everywhere-regular real rational function solutions of the KP1 equation ("multi-lumps") can be constructed via the polynomial analogs of theta functions from singular rational curves with cusps. The method we use can be understood as producing a degeneration of the well-understood soliton solutions from nodal singular curves. Hence it can be seen as a variation on the long-wave limit technique of Ablowitz and Satsuma, as developed by Zhang, Yang, Li, Guo, and Stepanyants. We present an explicit example of a three-lump solution constructed via the polynomial analog of the theta function from a rational curve with two cuspidal singular points, each with semigroup $\langle 2,5\rangle$. (In the theory of curve singularities, these are known as $A_4$ double points.) We conjecture that these ideas will generalize to give similar $M$-lump solutions with $M = \frac{N(N+1)}{2}$ for $N > 2$ starting from rational curves with two singular points with semigroup $\langle 2,2N+1\rangle$ ($A_{2N}$ double points). Similar solutions have been constructed by other methods previously; our contribution is to show how they arise from the algebraic-geometric setting by considering singular curves with several cusps, as in previous work of Agostini, Celik, and Little.

Click here to read this post out
ID: 820864; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: