×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2302.10440v2 Announce Type: replace
Abstract: We propose a single-level numerical approach to solve Stackelberg mean field game (MFG) problems. In Stackelberg MFG, an infinite population of agents play a non-cooperative game and choose their controls to optimize their individual objectives while interacting with the principal and other agents through the population distribution. The principal can influence the mean field Nash equilibrium at the population level through policies, and she optimizes her own objective, which depends on the population distribution. This leads to a bi-level problem between the principal and mean field of agents that cannot be solved using traditional methods for MFGs. We propose a reformulation of this problem as a single-level mean field optimal control problem through a penalization approach. We prove convergence of the reformulated problem to the original problem. We propose a machine learning method based on (feed-forward and recurrent) neural networks and illustrate it on several examples from the literature.

Click here to read this post out
ID: 820937; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: