×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2304.01823v3 Announce Type: replace
Abstract: An infinite graph is quasi-transitive if its vertex set has finitely many orbits under the action of its automorphism group. In this paper we obtain a structure theorem for locally finite quasi-transitive graphs avoiding a minor, which is reminiscent of the Robertson-Seymour Graph Minor Structure Theorem. We prove that every locally finite quasi-transitive graph $G$ avoiding a minor has a tree-decomposition whose torsos are finite or planar; moreover the tree-decomposition is canonical, i.e. invariant under the action of the automorphism group of $G$. As applications of this result, we prove the following.
* Every locally finite quasi-transitive graph attains its Hadwiger number, that is, if such a graph contains arbitrarily large clique minors, then it contains an infinite clique minor. This extends a result of Thomassen (1992) who proved it in the 4-connected case and suggested that this assumption could be omitted.
* Locally finite quasi-transitive graphs avoiding a minor are accessible (in the sense of Thomassen and Woess), which extends known results on planar graphs to any proper minor-closed family.
* Minor-excluded finitely generated groups are accessible (in the group-theoretic sense) and finitely presented, which extends classical results on planar groups.
* The domino problem is decidable in a minor-excluded finitely generated group if and only if the group is virtually free, which proves the minor-excluded case of a conjecture of Ballier and Stein (2018).

Click here to read this post out
ID: 820946; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: