×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2304.10793v2 Announce Type: replace
Abstract: We examine multidimensional polynomial progressions involving linearly independent polynomials in finite fields, proving power saving bounds for sets lacking such configurations. This jointly generalises earlier results of Peluse (for the single dimensional case) and the author (for distinct degree polynomials). In contrast to the cases studied in the aforementioned two papers, a usual PET induction argument does not give Gowers norm control over multidimensional progressions that involve polynomials of the same degrees. The main challenge is therefore to obtain Gowers norm control, and we accomplish this for all multidimensional polynomial progressions with pairwise independent polynomials. The key inputs are: (1) a quantitative version of a PET induction scheme developed in ergodic theory by Donoso, Koutsogiannis, Ferr\'e-Moragues and Sun, (2) a quantitative concatenation result for Gowers box norms in arbitrary finite abelian groups, motivated by earlier results of Tao, Ziegler, Peluse and Prendiville; (3) an adaptation to combinatorics of the box norm smoothing technique, recently developed in the ergodic setting by the author and Frantzikinakis; and (4) a new version of the multidimensional degree lowering argument.

Click here to read this post out
ID: 820948; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: