×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2306.17683v2 Announce Type: replace
Abstract: We consider a convex minimization problem for which the objective is the sum of a homogeneous polynomial of degree four and a linear term. Such task arises as a subproblem in algorithms for quadratic inverse problems with a difference-of-convex structure. We design a first-order method called Homogenized Gradient, along with an accelerated version, which enjoy fast convergence rates of respectively $\mathcal{O}(\kappa^2/K^2)$ and $\mathcal{O}(\kappa^2/K^4)$ in relative accuracy, where $K$ is the iteration counter. The constant $\kappa$ is the quartic condition number of the problem.
Then, we show that for a certain class of problems, it is possible to compute a preconditioner for which this condition number is $\sqrt{n}$, where $n$ is the problem dimension. To establish this, we study the more general problem of finding the best quadratic approximation of an $\ell_p$ norm composed with a quadratic map. Our construction involves a generalization of the so-called Lewis weights.

Click here to read this post out
ID: 820957; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: