×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.15102v1 Announce Type: new
Abstract: Optical trapping enables precise control of individual particles of different sizes, such as atoms, molecules, or nanospheres. Optical tweezers provide free-space omnidirectional optical trapping of objects in laboratories around the world. As an alternative to standard macroscopic setups based on lenses, which are inherently bound by the diffraction limit, plasmonic and photonic nanostructures promise trapping by near-field optical effects on the extreme nanoscale. However, the practical design of lossless waveguide-coupled nanostructures capable of trapping deeply sub-wavelength particles in all spatial directions using the gradient force has until now proven insurmountable. In this work, we demonstrate an omnidirectional optical trap realized by inverse-designing fabrication-ready integrated dielectric nanocavities. The sub-wavelength optical trap is designed to rely solely on the gradient force and is thus particle-size agnostic. In particular, we show how a nanometer-sized trapped particle experiences a force strong enough to overcome room-temperature thermal fluctuations. Furthermore, through the robust inverse design framework, we tailor manufacturable devices operating at near-infrared and optical frequencies. Our results open a new regime of levitated optical trapping by achieving a deep trapping potential capable of trapping single sub-wavelength particles in all directions using optical gradient forces. We anticipate potentially groundbreaking applications of the optimized optical trapping system for biomolecular analysis in aqueous environments, levitated cavity-optomechanics, and cold atom physics, constituting an important step towards realizing integrated bio-nanophotonics and mesoscopic quantum mechanical experiments.

Click here to read this post out
ID: 821187; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: