×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14692v1 Announce Type: cross
Abstract: Community search (CS) aims to identify a set of nodes based on a specified query, leveraging structural cohesiveness and attribute homogeneity. This task enjoys various applications, ranging from fraud detection to recommender systems. In contrast to algorithm-based approaches, graph neural network (GNN) based methods define communities using ground truth labels, leveraging prior knowledge to explore patterns from graph structures and node features. However, existing solutions face three major limitations: 1) GNN-based models primarily focus on the disjoint community structure, disregarding the nature of nodes belonging to multiple communities. 2) These model structures suffer from low-order awareness and severe efficiency issues. 3) The identified community is subject to the free-rider and boundary effects. In this paper, we propose Simplified Multi-hop Attention Networks (SMN), which consist of three designs. First, we introduce a subspace community embedding technique called Sparse Subspace Filter (SSF). SSF enables the projection of community embeddings into distinct vector subspaces, accommodating the nature of overlapping and nesting community structures. In addition, we propose a lightweight model structure and a hop-wise attention mechanism to capture high-order patterns while improving model efficiency. Furthermore, two search algorithms are developed to minimize the latent space's community radius, addressing the challenges of free-rider and boundary effects. To the best of our knowledge, this is the first learning-based study of overlapping community search. Extensive experiments validate the superior performance of SMN compared with the state-of-the-art approaches. SMN achieves 14.73% improvements in F1-Score and up to 3 orders of magnitude acceleration in model efficiency.

Click here to read this post out
ID: 821205; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: