×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16185v1 Announce Type: new
Abstract: We revisit the evolution of low-mass close binary systems under different magnetic braking (MB) prescriptions. We study binaries with a neutron star accretor. During mass transfer episodes, these systems emit X-rays and are known as Low Mass X-ray Binaries (LMXBs). When mass transfer stops, they can be observed as binary pulsars. Additionally, some of these systems can experience mass transfer while having orbital periods of less than 1 hr, thus evolving into ultracompact X-ray binaries (UCXBs). The evolution of LMXBs depends on their capability to lose angular momentum and maintain stable mass transfer. Among the angular momentum loss mechanisms, MB is one important, and still uncertain phenomenon. The standard MB prescription faces some problems when calculating LMXB evolution, leading to, e.g., a fine-tuning problem in the formation of UCXBs. Recent studies proposed new MB prescriptions, yielding diverse outcomes. Here, we investigate the effects of three novel MB prescriptions on the evolution of LMXBs using our stellar code. We found that all MB prescriptions considered allow the formation of binaries with orbital periods spanning from less than one hour to more than tens of days. Remarkably, our results enable the occurrence of wide systems even for the MB law that causes the strongest angular momentum losses and very high mass transfer rates. We found that models computed with the strongest MB prescription reach the UCXB state starting from a wider initial orbital period interval. Finally, we discuss and compare our results with observations and previous studies performed on this topic.

Click here to read this post out
ID: 821935; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: