×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16201v1 Announce Type: new
Abstract: We present JWST/NIRSpec high-resolution spectroscopy G395H/F290LP of MACS0647-JD, a gravitationally lensed galaxy merger at $z=10.167$. The new spectroscopy, which is acquired for the two lensed images (JD1 and JD2), detects and resolves emission lines in the rest-frame ultraviolet (UV) and blue optical, including the resolved [OII]3726,3729 doublet, [NeIII]3870, [HeI]3890, H$\delta$, H$\gamma$, and [OIII]4363. This is the first observation of the resolved [OII]3726,3729 doublet for a galaxy at $z>8$. We measure a line flux ratio [OII]3729/3726 $= 0.9 \pm 0.3$, which corresponds to an estimated electron density of $\log(n_{e} / \rm{cm}^{-3}) = 2.9 \pm 0.5$. This is significantly higher than the electron densities of local galaxies reported in the literature. We compile the measurements from the literature and further analyze the redshift evolution of $n_{e}$. We find that the redshift evolution follows the power-law form of $n_{e} = A\times (1+z)^{p}$ with $A=54^{+31}_{-23}$ cm$^{-3}$ and $p=1.2^{+0.4}_{-0.4}$. This power-law form may be explained by a combination of metallicity and morphological evolution of galaxies, which become, on average, more metal-poor and more compact with increasing redshift.

Click here to read this post out
ID: 821937; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: