×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16202v1 Announce Type: new
Abstract: We model the spectral formation occurring in the binary X-ray pulsar RX~J0209.6-7427 during the 2019 super-Eddington outburst. Using a theoretical model previously developed by the authors, we are able to produce spectra that closely resemble the phase-averaged X-ray spectra observed using NuSTAR and Insight-HXMT during low and high luminosity states of the outburst, respectively. The theoretical model simulates the accretion of fully ionized gas in a dipole magnetic field, and includes a complete description of the radiation hydrodynamics, matter distribution, and spectral formation. Type II X-ray outbursts provide an opportunity to study accretion over a large range of luminosities for the same neutron star. The analysis performed here represents the first time both the outburst low and high states of an accretion-powered X-ray pulsar are modeled using a physics-based model rather than standard phenomenological fitting with arbitrary mathematical functions. We find the outer polar cap radius remains constant and the column is more fully-filled with increasing luminosity, Comptonized bremsstrahlung dominates the formation of the phase-averaged X-ray spectrum, and a negative correlation exists between cyclotron centroid energy and luminosity, as expected. The super-Eddington nature of the outburst is rendered possible due to the low scattering cross section for photons propagating parallel to the magnetic field. We also find emission through the column top dominates in both the low and high states, implying the pulse profiles should have a roughly sinusoidal shape, which agrees with observed properties of ultra-luminous X-ray pulsars.

Click here to read this post out
ID: 821938; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: