×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16625v1 Announce Type: new
Abstract: Studies of the rotation and activity of M type stars are essential to enhance our understanding of stellar dynamos and angular momentum evolution. Using the outstanding photometric capabilities of space telescopes rotation signals even with low amplitudes can be investigated in up to now unrivaled detail. By combining data of K2 and the TESS prime mission the star spot activity of M dwarfs can be monitored on half a decade timescale. In the framework of our study on the rotation-activity relation for bright and nearby M dwarfs we also aim at an investigation of the long-term activity. While K2 was observing fields distributed around the ecliptic plane, the TESS prime mission was oriented along a line of ecliptic longitude with one camera centered on an ecliptic pole. Due to these different observing strategies, the overlap between K2 and the TESS prime mission is marginal. However, 45 stars from our sample were observed with both missions of which two early M-type stars that fulfill our selection criteria, EPIC 202059229 and EPIC 245919787, were analyzed in more detail. We found that for both stars the rotation period did not change while the rotational phase did change for EPIC 245919787 by ~0.2. The amplitude of the spot induced variability changed for both stars but more significant for EPIC 245919787. By comparing the cumulative flare frequency distributions we found that the flare activity for EPIC 202059229 is unchanged while it slightly changes for EPIC 245919787 between the K2 and TESS epochs. Using a combination of light curves from K2 and TESS that span a baseline up to 4.5 years we could measure significant differential rotation for EPIC 245919787. Furthermore, we show that combining missions like K2 and TESS is a promising method for detecting stellar activity cycles.

Click here to read this post out
ID: 821962; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: