×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16732v1 Announce Type: new
Abstract: During the first Gyr of their life, exoplanet atmospheres suffer from different atmospheric escape phenomena that can strongly affect the shape and morphology of the exoplanet itself. These processes can be studied with Ly$\alpha$, H$\alpha$ and/or He I triplet observations. We present high-resolution spectroscopy observations from CARMENES and GIARPS checking for He I and H$\alpha$ signals in 20 exoplanetary atmospheres: V1298Tau c, K2-100b, HD63433b, HD63433c, HD73583b, HD73583c, K2-77b, TOI-2076b, TOI-2048b, HD235088b, TOI-1807b, TOI-1136d, TOI-1268b, TOI-1683b, TOI-2018b, MASCARA-2b, WASP-189b, TOI-2046b, TOI-1431b, and HAT-P-57b. We report two new high-resolution spectroscopy He I detections for TOI-1268b and TOI-2018b, and an H$\alpha$ detection for TOI-1136d. The MOPYS (Measuring Out-flows in Planets orbiting Young Stars) project aims to understand the evaporating phenomena and test their predictions from the current observations. We compiled a list of 70 exoplanets with He I and/or H$\alpha$ observations, from this work and the literature, and we considered the He I and H$\alpha$ results as proxy for atmospheric escape. Our principal results are that 0.1-1Gyr-old planets do not exhibit more He I or H$\alpha$ detections than older planets, and evaporation signals are more frequent for planets orbiting $\sim$1-3Gyr-old stars. We provide new constrains to the cosmic shoreline, the empirical division between rocky planets and planets with atmosphere, by using the evaporation detections and explore the capabilities of a new dimensionless parameter, $R_{\rm He}/R_{\rm Hill}$, to explain the He I triplet detections. Furthermore, we present a statistically significant upper boundary for the He I triplet detections in the $T_{\rm eq}$ vs $\rho_{\rm p}$ parameter space. Planets located above that boundary are unlikely to show He I absorption signals.

Click here to read this post out
ID: 821971; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: