×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16103v1 Announce Type: cross
Abstract: Next-generation gravitational-wave detectors, such as the Einstein Telescope (ET), are expected to observe a few 100,000 signals each year. This will require efficient analysis tools and computational resources well beyond the needs of current detectors. Such resources are not presently available to the science community. Therefore, to investigate ET observational capabilities and science cases, Fisher-matrix methods are used to predict how precisely parameters like mass, spin, source distance or sky location can be estimated from ET data. The approach is based on a Gaussian approximation of the likelihood function. However, the reliability of error estimates obtained from Fisher-matrix methods remains an open question. In this article, we present a Fisher-matrix analysis of signals of the Gravitational Wave Transient Catalog (GWTC). We compare parameter-estimation errors obtained using the Fisher matrix code GWFish with the errors from the marginal distributions of the Virgo/LIGO posterior analysis. In order to understand the impact of prior distributions on the results, we implemented a Gaussian likelihood sampling algorithm with priors in GWFish. To ensure a fair comparison of the methods, the GWFish analyses presented in this article use the same priors and the same instrument-noise spectra as the Virgo/LIGO posterior analyses. Our findings imply that Fisher-matrix methods, especially if augmented with the use of priors, are a valid tool for ET science-case studies.

Click here to read this post out
ID: 821980; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: