×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16264v1 Announce Type: new
Abstract: In 1966, Pierre-Gilles de Gennes proposed a non-volatile mechanism for switching superconductivity on and off in a magnetic device. This involved a superconductor (S) sandwiched between ferromagnetic (F) insulators in which the net magnetic exchange field could be controlled through the magnetisation-orientation of the F layers. Because superconducting switches are attractive for a range of applications, extensive studies have been carried out on $F/S/F$ structures. Although these have demonstrated a sensitivity of the superconducting critical temperature ($T_{c}$) to parallel (P) and antiparallel (AP) magnetisation-orientations of the F layers, corresponding shifts in $T_c$ (i.e., ${\Delta}T_c = T_{c,AP} - T_{c,P}$) are lower than predicted with ${\Delta}T_c$ only a small fraction of $T_{c,AP}$, precluding the development of applications. Here, we report $EuS/Au/Nb/EuS$ structures where EuS is an insulating ferromagnet, Nb is a superconductor and Au is a heavy metal. For P magnetisations, the superconducting state in this structure is quenched down to the lowest measured temperature of 20 mK meaning that ${\Delta}T_c/T_{c,AP}$ is practically 1. The key to this so-called absolute switching effect is a sizable spin-mixing conductance at the $EuS/Au$ interface which ensures a robust magnetic proximity effect, unlocking the potential of $F/S/F$ switches for low power electronics.

Click here to read this post out
ID: 822032; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: