×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16453v1 Announce Type: new
Abstract: We investigate analytically the performance of many-body energy functionals, derived respectively by Klein and Luttinger and Ward, at different levels of diagrammatic approximations, ranging from second Born, to GW, to the so-called T-matrix, for the calculation of total energies and potential energy surfaces. We benchmark our theoretical results on the extended two-site Hubbard model, which is analytically solvable and for which several exact properties can be calculated. Despite its simplicity, this model displays the physics of strongly correlated electrons: it is prototypical of the H$_2$ dissociation, a notoriously difficult problem to solve accurately for the majority of mean-field based approaches. We show that both functionals exhibit good to excellent variational properties, particularly in the case of the Luttinger-Ward one, which is in close agreement with fully self-consistent calculations, and elucidate the relation between the accuracy of the results and the different input one-body Green's functions. Provided that these are wisely chosen, we show how the Luttinger-Ward functional can be used as a computationally inexpensive alternative to fully self-consistent many-body calculations, without sacrificing the precision of the results obtained. Furthermore, in virtue of this accuracy, we argue that this functional can also be used to rank different many-body approximations at different regimes of electronic correlation, once again bypassing the need for self-consistency.

Click here to read this post out
ID: 822047; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: