×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16523v1 Announce Type: new
Abstract: The facilitation of Rydberg excitations in a gas of atoms provides an ideal model system to study epidemic evolution on (dynamic) networks and self organization of complex systems to the critical point of a non-equilibrium phase transition. Using Monte-Carlo simulations and a machine learning algorithm we show that the universality class of this phase transition can be tuned. The classes include directed percolation (DP), the most common class in short-range spreading models, and mean-field (MF) behavior, but also different types of anomalous directed percolation (ADP), characterized by rare long-range excitation processes. In a frozen gas, ground state atoms that can facilitate each other form a static network, for which we predict DP universality. Atomic motion then turns the network into a dynamic one with long-range (Levy-flight type) excitations. This leads to continuously varying critical exponents corresponding to the ADP universality class, eventually reaching MF behavior. These findings also explain the recently observed critical exponent of Rydberg facilitation in an ultra-cold gas experiment [Helmrich et al., Nature 577, 481 (2020)], which was in between DP and MF values.

Click here to read this post out
ID: 822054; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: