×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16524v1 Announce Type: new
Abstract: Quantitative analysis of microstructural features on the nanoscale, including precipitates, local chemical orderings (LCOs) or structural defects (e.g. stacking faults) plays a pivotal role in understanding the mechanical and physical responses of engineering materials. Atom probe tomography (APT), known for its exceptional combination of chemical sensitivity and sub-nanometer resolution, primarily identifies microstructures through compositional segregations. However, this fails when there is no significant segregation, as can be the case for LCOs and stacking faults. Here, we introduce a 3D deep learning approach, AtomNet, designed to process APT point cloud data at the single-atom level for nanoscale microstructure extraction, simultaneously considering compositional and structural information. AtomNet is showcased in segmenting L12-type nanoprecipitates from the matrix in an AlLiMg alloy, irrespective of crystallographic orientations, which outperforms previous methods. AtomNet also allows for 3D imaging of L10-type LCOs in an AuCu alloy, a challenging task for conventional analysis due to their small size and subtle compositional differences. Finally, we demonstrate the use of AtomNet for revealing 2D stacking faults in a Co-based superalloy, without any defected training data, expanding the capabilities of APT for automated exploration of hidden microstructures. AtomNet pushes the boundaries of APT analysis, and holds promise in establishing precise quantitative microstructure-property relationships across a diverse range of metallic materials.

Click here to read this post out
ID: 822055; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: