×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16704v1 Announce Type: new
Abstract: We study the critical behaviors of the ground and first excited states in the one-dimensional nonreciprocal Aubry-Andr{\'e}-Harper model using both the self-normal and biorthogonal fidelity susceptibilities. We demonstrate that fidelity susceptibilities serve as a probe for the phase transition in the nonreciprocal AAH model. For ground states, characterized by real eigenenergies across the entire regime, both fidelity susceptibilities near the critical points scale as $N^{2}$, akin to the Hermitian AAH model. However, for the first-excited states, where $\mathcal{PT}$ transitions occur, the fidelity susceptibilities exhibit distinct scaling laws, contingent upon whether the lattice consists of even or odd sites. For even lattices, the self-normal fidelity susceptibilities near the critical points continue to scale as $N^{2}$. For odd lattices, the biorthogonal fidelity susceptibilities diverge, while the self-normal fidelity susceptibilities exhibit linear behavior, indicating a novel scaling law.

Click here to read this post out
ID: 822069; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: