×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16465v1 Announce Type: cross
Abstract: Liquid metal catalysts (LMCats), primarily molten copper, have demonstrated their efficiency in the chemical vapour deposition (CVD) approach for synthesising high-quality, large-area graphene. However, their high melting temperatures limit broader applications. Reducing the temperature of graphene production on LMCats would lead to a more efficient and cost-effective process. Here, we investigated the effects of alloying copper with a low-melting temperature metal on graphene growth in real-time. We examined a set of liquid copper-gallium alloy systems using two complementary in situ techniques: radiation-mode optical microscopy and synchrotron X-ray reflectivity (XRR). Microscopy observations revealed reduced catalytic activity and graphene quality degradation in compositions with gallium domination. The XRR confirmed the formation of single-layer graphene on alloys with up to 60 wt% of gallium. Additionally, we detected a systematic increase in adsorption height on the alloys' surface, suggesting a weaker graphene adhesion on gallium. These findings propose a trade-off between layer quality and production cost reduction is feasible. Our results offer insights into the CVD synthesis of graphene on bimetallic liquid surfaces and underscore the potential of gallium-copper alloys for enabling the direct transfer of graphene from a liquid substrate, thereby addressing the limitations imposed by high melting temperatures of conventional LMCats.

Click here to read this post out
ID: 822087; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: