×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2401.03550v2 Announce Type: replace
Abstract: Despite extensive research, the fundamental physical mechanisms underlying the Mpemba effect, a phenomenon where a substance cools faster after initially being heated, remain elusive. Although historically linked with water, the Mpemba effect manifests across diverse systems, sparking heightened interest in Mpemba-like phenomena. Concurrently, the Kovacs effect, a memory phenomenon observed in materials like polymers, involves rapid quenching and subsequent temperature changes, resulting in nonmonotonic relaxation behavior. This paper probes the intricacies of the Mpemba and Kovacs effects within the framework of the time-delayed Newton's law of cooling, recognized as a simplistic yet effective phenomenological model accommodating memory phenomena. This law allows for a nuanced comprehension of temperature variations, introducing a time delay ($\tau$) and incorporating specific protocols for the thermal bath temperature, contingent on a defined waiting time ($t_{\text{w}}$). Remarkably, the relevant parameter space is two-dimensional ($\tau$ and $t_{\text{w}}$), with bath temperatures exerting no influence on the presence or absence of the Mpemba effect or the relative strength of the Kovacs effect. The findings enhance our understanding of these memory phenomena, providing valuable insights applicable to researchers across diverse fields, ranging from physics to materials science.

Click here to read this post out
ID: 822106; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: