×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14697v2 Announce Type: replace
Abstract: The cubic $\beta$-Mn-type alloy Co$_8$Zn$_8$Mn$_4$ is a chiral helimagnet that exhibits a peculiar temperature-dependent behavior in the spiral pitch, which decreases from 130 nm at room temperature to 70 nm below 20 K. Notably, this shortening is also accompanied by a structural transition of the metastable skyrmion texture, transforming from a hexagonal lattice to a square lattice of elongated skyrmions. The underlying mechanism of these transformations remain unknown, with interactions potentially involved including temperature-dependent Dzyaloshinskii-Moriya interaction, magnetocrystalline anisotropy, and exchange anisotropy. Here, x-ray resonant magnetic small-angle scattering in vectorial magnetic fields was employed to investigate the temperature dependence of the anisotropic properties of the helical phase in Co$_8$Zn$_8$Mn$_4$. Our results reveal quantitatively that the magnitude of the anisotropic exchange interaction increases by a factor of 4 on cooling from room temperature to 20 K, leading to a 5% variation in the helical pitch within the (001) plane at 20 K. While anisotropic exchange interaction contributes to the shortening of the spiral pitch, its magnitude is insufficient to explain the variation in the spiral periodicity from room to low temperatures. Finally, we demonstrate that magnetocrystalline and exchange anisotropies compete, favoring different orientations of the helical vector in the ground state.

Click here to read this post out
ID: 822125; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 5
CC:
No creative common's license
Comments: