×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16152v1 Announce Type: new
Abstract: This paper revisits the identity detection problem under the current grant-free protocol in massive machine-type communications (mMTC) by asking the following question: for stable identity detection performance, is it enough to permit active devices to transmit preambles without any handshaking with the base station (BS)? Specifically, in the current grant-free protocol, the BS blindly allocates a fixed length of preamble to devices for identity detection as it lacks the prior information on the number of active devices $K$. However, in practice, $K$ varies dynamically over time, resulting in degraded identity detection performance especially when $K$ is large. Consequently, the current grant-free protocol fails to ensure stable identity detection performance. To address this issue, we propose a two-stage communication protocol which consists of estimation of $K$ in Phase I and detection of identities of active devices in Phase II. The preamble length for identity detection in Phase II is dynamically allocated based on the estimated $K$ in Phase I through a table lookup manner such that the identity detection performance could always be better than a predefined threshold. In addition, we design an algorithm for estimating $K$ in Phase I, and exploit the estimated $K$ to reduce the computational complexity of the identity detector in Phase II. Numerical results demonstrate the effectiveness of the proposed two-stage communication protocol and algorithms.

Click here to read this post out
ID: 822195; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: