×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16168v1 Announce Type: new
Abstract: When neural networks are confronted with unfamiliar data that deviate from their training set, this signifies a domain shift. While these networks output predictions on their inputs, they typically fail to account for their level of familiarity with these novel observations. This challenge becomes even more pronounced in resource-constrained settings, such as embedded systems or edge devices. To address such challenges, we aim to recalibrate a neural network's decision boundaries in relation to its cognizance of the data it observes, introducing an approach we coin as certainty distillation. While prevailing works navigate unsupervised domain adaptation (UDA) with the goal of curtailing model entropy, they unintentionally birth models that grapple with calibration inaccuracies - a dilemma we term the over-certainty phenomenon. In this paper, we probe the drawbacks of this traditional learning model. As a solution to the issue, we propose a UDA algorithm that not only augments accuracy but also assures model calibration, all while maintaining suitability for environments with limited computational resources.

Click here to read this post out
ID: 822204; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: