×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16179v1 Announce Type: new
Abstract: Anomaly detection plays a crucial role in industrial settings, particularly in maintaining the reliability and optimal performance of cooling systems. Traditional anomaly detection methods often face challenges in handling diverse data characteristics and variations in noise levels, resulting in limited effectiveness. And yet traditional anomaly detection often relies on application of single models. This work proposes a novel, robust approach using five heterogeneous independent models combined with a dual ensemble fusion of voting techniques. Diverse models capture various system behaviors, while the fusion strategy maximizes detection effectiveness and minimizes false alarms. Each base autoencoder model learns a unique representation of the data, leveraging their complementary strengths to improve anomaly detection performance. To increase the effectiveness and reliability of final anomaly prediction, dual ensemble technique is applied. This approach outperforms in maximizing the coverage of identifying anomalies. Experimental results on a real-world dataset of industrial cooling system data demonstrate the effectiveness of the proposed approach. This approach can be extended to other industrial applications where anomaly detection is critical for ensuring system reliability and preventing potential malfunctions.

Click here to read this post out
ID: 822210; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: