×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16218v1 Announce Type: new
Abstract: Neural architecture search (NAS) is a challenging problem. Hierarchical search spaces allow for cheap evaluations of neural network sub modules to serve as surrogate for architecture evaluations. Yet, sometimes the hierarchy is too restrictive or the surrogate fails to generalize. We present FaDE which uses differentiable architecture search to obtain relative performance predictions on finite regions of a hierarchical NAS space. The relative nature of these ranks calls for a memory-less, batch-wise outer search algorithm for which we use an evolutionary algorithm with pseudo-gradient descent. FaDE is especially suited on deep hierarchical, respectively multi-cell search spaces, which it can explore by linear instead of exponential cost and therefore eliminates the need for a proxy search space.
Our experiments show that firstly, FaDE-ranks on finite regions of the search space correlate with corresponding architecture performances and secondly, the ranks can empower a pseudo-gradient evolutionary search on the complete neural architecture search space.

Click here to read this post out
ID: 822227; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: