×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16267v1 Announce Type: new
Abstract: We consider the PageRank problem in the dynamic setting, where the goal is to explicitly maintain an approximate PageRank vector $\pi \in \mathbb{R}^n$ for a graph under a sequence of edge insertions and deletions. Our main result is a complete characterization of the complexity of dynamic PageRank maintenance for both multiplicative and additive ($L_1$) approximations.
First, we establish matching lower and upper bounds for maintaining additive approximate PageRank in both incremental and decremental settings. In particular, we demonstrate that in the worst-case $(1/\alpha)^{\Theta(\log \log n)}$ update time is necessary and sufficient for this problem, where $\alpha$ is the desired additive approximation. On the other hand, we demonstrate that the commonly employed ForwardPush approach performs substantially worse than this optimal runtime. Specifically, we show that ForwardPush requires $\Omega(n^{1-\delta})$ time per update on average, for any $\delta > 0$, even in the incremental setting.
For multiplicative approximations, however, we demonstrate that the situation is significantly more challenging. Specifically, we prove that any algorithm that explicitly maintains a constant factor multiplicative approximation of the PageRank vector of a directed graph must have amortized update time $\Omega(n^{1-\delta})$, for any $\delta > 0$, even in the incremental setting, thereby resolving a 13-year old open question of Bahmani et al.~(VLDB 2010). This sharply contrasts with the undirected setting, where we show that $\rm{poly}\ \log n$ update time is feasible, even in the fully dynamic setting under oblivious adversary.

Click here to read this post out
ID: 822252; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 5
CC:
No creative common's license
Comments: