×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16271v1 Announce Type: new
Abstract: True random numbers play a critical role in secure cryptography. The generation relies on a stable and readily extractable entropy source. Here, from solution-processed structurally metastable 1T' MoTe2, we prove stable output of featureless, stochastic, and yet stable conductance noise at a broad temperature (down to 15 K) with minimal power consumption (down to 0.05 micro-W). Our characterizations and statistical analysis of the characteristics of the conductance noise suggest that the noise arises from the volatility of the stochastic polarization of the underlying ferroelectric dipoles in the 1T' MoTe2. Further, as proved in our experiments and indicated by our Monte Carlo simulation, the ferroelectric dipole polarization is a reliable entropy source with the stochastic polarization persistent and stable over time. Exploiting the conductance noise, we achieve the generation of true random numbers and demonstrate their use in common cryptographic applications, for example, password generation and data encryption. Besides, particularly, we show a privacy safeguarding approach to sensitive data that can be critical for the cryptography of neural networks. We believe our work will bring insights into the understanding of the metastable 1T' MoTe2 and, more importantly, underpin its great potential in secure cryptography.

Click here to read this post out
ID: 822254; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: