×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16322v1 Announce Type: new
Abstract: Approximate K-Nearest Neighbor (AKNN) search in high-dimensional spaces is a critical yet challenging problem. The efficiency of AKNN search largely depends on the computation of distances, a process that significantly affects the runtime. To improve computational efficiency, existing work often opts for estimating approximate distances rather than computing exact distances, at the cost of reduced AKNN search accuracy. The recent method of ADSampling has attempted to mitigate this problem by using random projection for distance approximations and adjusting these approximations based on error bounds to improve accuracy. However, ADSampling faces limitations in effectiveness and generality, mainly due to the suboptimality of its distance approximations and its heavy reliance on random projection matrices to obtain error bounds. In this study, we propose a new method that uses an optimal orthogonal projection instead of random projection, thereby providing improved distance approximations. Moreover, our method uses error quantiles instead of error bounds for approximation adjustment, and the derivation of error quantiles can be made independent of the projection matrix, thus extending the generality of our approach. Extensive experiments confirm the superior efficiency and effectiveness of the proposed method. In particular, compared to the state-of-the-art method of ADSampling, our method achieves a speedup of 1.6 to 2.1 times on real datasets with almost no loss of accuracy.

Click here to read this post out
ID: 822281; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: