×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16381v1 Announce Type: new
Abstract: Many effect systems for algebraic effect handlers are designed to guarantee that all invoked effects are handled adequately. However, respective researchers have developed their own effect systems that differ in how to represent the collections of effects that may happen. This situation results in blurring what is required for the representation and manipulation of effect collections in a safe effect system.
In this work, we present a language ${\lambda_{\mathrm{EA}}}$ equipped with an effect system that abstracts the existing effect systems for algebraic effect handlers. The effect system of ${\lambda_{\mathrm{EA}}}$ is parameterized over effect algebras, which abstract the representation and manipulation of effect collections in safe effect systems. We prove the type-and-effect safety of ${\lambda_{\mathrm{EA}}}$ by assuming that a given effect algebra meets certain properties called safety conditions. As a result, we can obtain the safety properties of a concrete effect system by proving that an effect algebra corresponding to the concrete system meets the safety conditions. We also show that effect algebras meeting the safety conditions are expressive enough to accommodate some existing effect systems, each of which represents effect collections in a different style. Our framework can also differentiate the safety aspects of the effect collections of the existing effect systems. To this end, we extend ${\lambda_{\mathrm{EA}}}$ and the safety conditions to lift coercions and type-erasure semantics, propose other effect algebras including ones for which no effect system has been studied in the literature, and compare which effect algebra is safe and which is not for the extensions.

Click here to read this post out
ID: 822313; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: