×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16398v1 Announce Type: new
Abstract: Many image retrieval studies use metric learning to train an image encoder. However, metric learning cannot handle differences in users' preferences, and requires data to train an image encoder. To overcome these limitations, we revisit relevance feedback, a classic technique for interactive retrieval systems, and propose an interactive CLIP-based image retrieval system with relevance feedback. Our retrieval system first executes the retrieval, collects each user's unique preferences through binary feedback, and returns images the user prefers. Even when users have various preferences, our retrieval system learns each user's preference through the feedback and adapts to the preference. Moreover, our retrieval system leverages CLIP's zero-shot transferability and achieves high accuracy without training. We empirically show that our retrieval system competes well with state-of-the-art metric learning in category-based image retrieval, despite not training image encoders specifically for each dataset. Furthermore, we set up two additional experimental settings where users have various preferences: one-label-based image retrieval and conditioned image retrieval. In both cases, our retrieval system effectively adapts to each user's preferences, resulting in improved accuracy compared to image retrieval without feedback. Overall, our work highlights the potential benefits of integrating CLIP with classic relevance feedback techniques to enhance image retrieval.

Click here to read this post out
ID: 822323; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: