×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16412v1 Announce Type: new
Abstract: In this paper, we address the problem of prescribed-time leader-following consensus of heterogeneous multi-agent systems (MASs) in the presence of unknown sensor sensitivity. Under a connected undirected topology, we propose a time-varying dual observer/controller design framework that makes use of regular local and inaccurate feedback to achieve consensus tracking within a prescribed time. In particular, the developed analysis framework is applicable to MASs equipped with sensors of different sensitivities. One of the design innovations involves constructing a distributed matrix pencil formulation based on worst-case sensors, yielding control parameters with sufficient robustness yet relatively low conservatism. Another novelty is the construction of the control gains, which consists of the product of a proportional coefficient obtained from the matrix pencil formulation and a classic time-varying function that grows to infinity or a novel bounded time-varying function. Furthermore, it is possible to extend the prescribed-time distributed protocol to infinite time domain by introducing the bounded time-varying gain technique without sacrificing the ultimate control accuracy, and the corresponding technical proof is comprehensive. The effectiveness of the method is demonstrated through a group of 5 single-link robot manipulators.

Click here to read this post out
ID: 822331; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: