×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16457v1 Announce Type: new
Abstract: In deep learning applications, robustness measures the ability of neural models that handle slight changes in input data, which could lead to potential safety hazards, especially in safety-critical applications. Pre-deployment assessment of model robustness is essential, but existing methods often suffer from either high costs or imprecise results. To enhance safety in real-world scenarios, metrics that effectively capture the model's robustness are needed. To address this issue, we compare the rigour and usage conditions of various assessment methods based on different definitions. Then, we propose a straightforward and practical metric utilizing hypothesis testing for probabilistic robustness and have integrated it into the TorchAttacks library. Through a comparative analysis of diverse robustness assessment methods, our approach contributes to a deeper understanding of model robustness in safety-critical applications.

Click here to read this post out
ID: 822351; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: