×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16489v1 Announce Type: new
Abstract: This paper studies an online replication problem for distributed data access. The goal is to dynamically create and delete data copies in a multi-server system as time passes to minimize the total storage and network cost of serving access requests. We study the problem in the emergent learning-augmented setting, assuming simple binary predictions about inter-request times at individual servers. We develop an online algorithm and prove that it is ($\frac{5+\alpha}{3}$)-consistent (competitiveness under perfect predictions) and ($1 + \frac{1}{\alpha}$)-robust (competitiveness under terrible predictions), where $\alpha \in (0, 1]$ is a hyper-parameter representing the level of distrust in the predictions. We also study the impact of mispredictions on the competitive ratio of the proposed algorithm and adapt it to achieve a bounded robustness while retaining its consistency. We further establish a lower bound of $\frac{3}{2}$ on the consistency of any deterministic learning-augmented algorithm. Experimental evaluations are carried out to evaluate our algorithms using real data access traces.

Click here to read this post out
ID: 822365; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: