×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16518v1 Announce Type: new
Abstract: We lift metrics over words to metrics over word-to-word transductions, by defining the distance between two transductions as the supremum of the distances of their respective outputs over all inputs. This allows to compare transducers beyond equivalence.
Two transducers are close (resp. $k$-close) with respect to a metric if their distance is finite (resp. at most $k$). Over integer-valued metrics computing the distance between transducers is equivalent to deciding the closeness and $k$-closeness problems. For common integer-valued edit distances such as, Hamming, transposition, conjugacy and Levenshtein family of distances, we show that the closeness and the $k$-closeness problems are decidable for functional transducers. Hence, the distance with respect to these metrics is also computable.
Finally, we relate the notion of distance between functions to the notions of diameter of a relation and index of a relation in another. We show that computing edit distance between functional transducers is equivalent to computing diameter of a rational relation and both are a specific instance of the index problem of rational relations.

Click here to read this post out
ID: 822381; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: