×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16578v1 Announce Type: new
Abstract: In below freezing winter conditions, road surface friction can greatly vary based on the mixture of snow, ice, and water on the road. Friction between the road and vehicle tyres is a critical parameter defining vehicle dynamics, and therefore road surface friction information is essential to acquire for several intelligent transportation applications, such as safe control of automated vehicles or alerting drivers of slippery road conditions. This paper explores computer vision-based evaluation of road surface friction from roadside cameras. Previous studies have extensively investigated the application of convolutional neural networks for the task of evaluating the road surface condition from images. Here, we propose a hybrid deep learning architecture, WCamNet, consisting of a pretrained visual transformer model and convolutional blocks. The motivation of the architecture is to combine general visual features provided by the transformer model, as well as finetuned feature extraction properties of the convolutional blocks. To benchmark the approach, an extensive dataset was gathered from national Finnish road infrastructure network of roadside cameras and optical road surface friction sensors. Acquired results highlight that the proposed WCamNet outperforms previous approaches in the task of predicting the road surface friction from the roadside camera images.

Click here to read this post out
ID: 822412; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: