×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16579v1 Announce Type: new
Abstract: Maintaining temporal stability is crucial in multi-agent trajectory prediction. Insufficient regularization to uphold this stability often results in fluctuations in kinematic states, leading to inconsistent predictions and the amplification of errors. In this study, we introduce a framework called Multi-Agent Trajectory prediction via neural interaction Energy (MATE). This framework assesses the interactive motion of agents by employing neural interaction energy, which captures the dynamics of interactions and illustrates their influence on the future trajectories of agents. To bolster temporal stability, we introduce two constraints: inter-agent interaction constraint and intra-agent motion constraint. These constraints work together to ensure temporal stability at both the system and agent levels, effectively mitigating prediction fluctuations inherent in multi-agent systems. Comparative evaluations against previous methods on four diverse datasets highlight the superior prediction accuracy and generalization capabilities of our model.

Click here to read this post out
ID: 822413; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: