×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16650v1 Announce Type: new
Abstract: Tow steering technologies, such as Automated fiber placement, enable the fabrication of composite laminates with curvilinear fiber, tow, or tape paths. Designers may therefore tailor tow orientations locally according to the expected local stress state within a structure, such that strong and stiff orientations of the tow are (for example) optimized to provide maximal mechanical benefit. Tow path optimization can be an effective tool in automating this design process, yet has a tendency to create complex designs that may be challenging to manufacture. In the context of tow steering, these complexities can manifest in defects such as tow wrinkling, gaps, overlaps. In this work, we implement manufacturing constraints within the tow path optimization formulation to restrict the minimum tow turning radius and the maximum density of gaps between and overlaps of tows. This is achieved by bounding the local value of the curl and divergence of the vector field associated with the tow orientations. The resulting local constraints are effectively enforced in the optimization framework through the Augmented Lagrangian method. The resulting optimization methodology is demonstrated by designing 2D and 3D structures with optimized tow orientation paths that maximize stiffness (minimize compliance) considering various levels of manufacturing restrictions. The optimized tow paths are shown to be structurally efficient and to respect imposed manufacturing constraints. As expected, the more geometrical complexity that can be achieved by the feedstock tow and placement technology, the higher the stiffness of the resulting optimized design.

Click here to read this post out
ID: 822443; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: