×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16651v1 Announce Type: new
Abstract: Automating hardware (HW) security vulnerability detection and mitigation during the design phase is imperative for two reasons: (i) It must be before chip fabrication, as post-fabrication fixes can be costly or even impractical; (ii) The size and complexity of modern HW raise concerns about unknown vulnerabilities compromising CIA triad. While Large Language Models (LLMs) can revolutionize both HW design and testing processes, within the semiconductor context, LLMs can be harnessed to automatically rectify security-relevant vulnerabilities inherent in HW designs. This study explores the seeds of LLM integration in register transfer level (RTL) designs, focusing on their capacity for autonomously resolving security-related vulnerabilities. The analysis involves comparing methodologies, assessing scalability, interpretability, and identifying future research directions. Potential areas for exploration include developing specialized LLM architectures for HW security tasks and enhancing model performance with domain-specific knowledge, leading to reliable automated security measurement and risk mitigation associated with HW vulnerabilities.

Click here to read this post out
ID: 822444; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: