×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16666v1 Announce Type: new
Abstract: While neural implicit representations have gained popularity in multi-view 3D reconstruction, previous work struggles to yield physically plausible results, thereby limiting their applications in physics-demanding domains like embodied AI and robotics. The lack of plausibility originates from both the absence of physics modeling in the existing pipeline and their inability to recover intricate geometrical structures. In this paper, we introduce PhyRecon, which stands as the first approach to harness both differentiable rendering and differentiable physics simulation to learn implicit surface representations. Our framework proposes a novel differentiable particle-based physical simulator seamlessly integrated with the neural implicit representation. At its core is an efficient transformation between SDF-based implicit representation and explicit surface points by our proposed algorithm, Surface Points Marching Cubes (SP-MC), enabling differentiable learning with both rendering and physical losses. Moreover, we model both rendering and physical uncertainty to identify and compensate for the inconsistent and inaccurate monocular geometric priors. The physical uncertainty additionally enables a physics-guided pixel sampling to enhance the learning of slender structures. By amalgamating these techniques, our model facilitates efficient joint modeling with appearance, geometry, and physics. Extensive experiments demonstrate that PhyRecon significantly outperforms all state-of-the-art methods in terms of reconstruction quality. Our reconstruction results also yield superior physical stability, verified by Isaac Gym, with at least a 40% improvement across all datasets, opening broader avenues for future physics-based applications.

Click here to read this post out
ID: 822452; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: