×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2111.10409v4 Announce Type: replace
Abstract: One can fix the randomness used by a randomized algorithm, but there is no analogous notion of fixing the quantumness used by a quantum algorithm. Underscoring this fundamental difference, we show that, in the black-box setting, the behavior of quantum polynomial-time ($\mathsf{BQP}$) can be remarkably decoupled from that of classical complexity classes like $\mathsf{NP}$. Specifically:
-There exists an oracle relative to which $\mathsf{NP^{BQP}}\not\subset\mathsf{BQP^{PH}}$, resolving a 2005 problem of Fortnow. As a corollary, there exists an oracle relative to which $\mathsf{P}=\mathsf{NP}$ but $\mathsf{BQP}\neq\mathsf{QCMA}$.
-Conversely, there exists an oracle relative to which $\mathsf{BQP^{NP}}\not\subset\mathsf{PH^{BQP}}$.
-Relative to a random oracle, $\mathsf{PP}=\mathsf{PostBQP}$ is not contained in the "$\mathsf{QMA}$ hierarchy" $\mathsf{QMA}^{\mathsf{QMA}^{\mathsf{QMA}^{\cdots}}}$.
-Relative to a random oracle, $\mathsf{\Sigma}_{k+1}^\mathsf{P}\not\subset\mathsf{BQP}^{\mathsf{\Sigma}_{k}^\mathsf{P}}$ for every $k$.
-There exists an oracle relative to which $\mathsf{BQP}=\mathsf{P^{\# P}}$ and yet $\mathsf{PH}$ is infinite.
-There exists an oracle relative to which $\mathsf{P}=\mathsf{NP}\neq\mathsf{BQP}=\mathsf{P^{\# P}}$.
To achieve these results, we build on the 2018 achievement by Raz and Tal of an oracle relative to which $\mathsf{BQP}\not \subset \mathsf{PH}$, and associated results about the Forrelation problem. We also introduce new tools that might be of independent interest. These include a "quantum-aware" version of the random restriction method, a concentration theorem for the block sensitivity of $\mathsf{AC^0}$ circuits, and a (provable) analogue of the Aaronson-Ambainis Conjecture for sparse oracles.

Click here to read this post out
ID: 822571; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: