×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2206.08479v3 Announce Type: replace
Abstract: Moving scientific computation from high-performance computing (HPC) and cloud computing (CC) environments to devices on the edge, i.e., physically near instruments of interest, has received tremendous interest in recent years. Such edge computing environments can operate on data in-situ, offering enticing benefits over data aggregation to HPC and CC facilities that include avoiding costs of transmission, increased data privacy, and real-time data analysis. Because of the inherent unreliability of edge computing environments, new fault tolerant approaches must be developed before the benefits of edge computing can be realized. Motivated by algorithm-based fault tolerance, a variant of the asynchronous Jacobi (ASJ) method is developed that achieves resilience to data corruption by rejecting solution approximations from neighbor devices according to a bound derived from convergence theory. Numerical results on a two-dimensional Poisson problem show the new rejection criterion, along with a novel approximation to the shortest path length on which the criterion depends, restores convergence for the ASJ variant in the presence of certain types data corruption. Numerical results are obtained for when the singular values in the analytic bound are approximated. A linear system with a more dense sparsity pattern is also explored. All results indicate that successful resilience to data corruption depends on whether the bound tightens fast enough to reject corrupted data before the iteration evolution deviates significantly from that predicted by the convergence theory defining the bound. This observation generalizes to future work on algorithm-based fault tolerance for other asynchronous algorithms, including upcoming approaches that leverage Krylov subspaces.

Click here to read this post out
ID: 822574; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: