×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2207.09993v3 Announce Type: replace
Abstract: The independence number of a tree decomposition is the maximum of the independence numbers of the subgraphs induced by its bags. The tree-independence number of a graph is the minimum independence number of a tree decomposition of it. Several NP-hard graph problems, like maximum weight independent set, can be solved in time n^{O(k)} if the input n-vertex graph is given together with a tree decomposition of independence number k. Yolov, in [SODA 2018], gave an algorithm that, given an n-vertex graph G and an integer k, in time n^{O(k^3)} either constructs a tree decomposition of G whose independence number is O(k^3) or correctly reports that the tree-independence number of G is larger than k.
In this paper, we first give an algorithm for computing the tree-independence number with a better approximation ratio and running time and then prove that our algorithm is, in some sense, the best one can hope for. More precisely, our algorithm runs in time 2^{O(k^2)} n^{O(k)} and either outputs a tree decomposition of G with independence number at most $8k$, or determines that the tree-independence number of G is larger than k. This implies 2^{O(k^2)} n^{O(k)}-time algorithms for various problems, like maximum weight independent set, parameterized by the tree-independence number k without needing the decomposition as an input. Assuming Gap-ETH, an n^{\Omega(k)} factor in the running time is unavoidable for any approximation algorithm for the tree-independence number.
Our second result is that the exact computation of the tree-independence number is para-NP-hard: We show that for every constant k \ge 4 it is NP-hard to decide if a given graph has the tree-independence number at most k.

Click here to read this post out
ID: 822575; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: