×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2208.05565v2 Announce Type: replace
Abstract: Network centrality measures play a crucial role in understanding graph structures, assessing the importance of nodes, paths, or cycles based on directed or reciprocal interactions encoded by vertices and edges. Estrada and Ross extended these measures to simplicial complexes to account for higher-order connections. In this work, we introduce novel centrality measures by leveraging algebraically-computable topological signatures of cycles and their homological persistence. We apply tools from algebraic topology to extract multiscale signatures within cycle spaces of weighted graphs, tracking homology generators persisting across a weight-induced filtration of simplicial complexes built over point clouds. This approach incorporates persistent signatures and merge information of homology classes along the filtration, quantifying cycle importance not only by geometric and topological significance but also by homological influence on other cycles. We demonstrate the stability of these measures under small perturbations using an appropriate metric to ensure robustness in practical applications. Finally, we apply these measures to fractal-like point clouds, revealing their capability to detect information consistent with, and possibly overlooked by, common topological summaries.

Click here to read this post out
ID: 822577; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: