×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2301.12577v3 Announce Type: replace
Abstract: In the present work, we examine and analyze an hp-version interior penalty discontinuous Galerkin finite element method for the numerical approximation of a steady fluid system on computational meshes consisting of polytopic elements on the boundary. This approach is based on the discontinuous Galerkin method, enriched by arbitrarily shaped elements techniques as has been introduced in [13]. In this framework, and employing extensions of trace, Markov-type, and H1/L2-type inverse estimates to arbitrary element shapes, we examine a stationary Stokes fluid system enabling the proof of the inf/sup condition and the hp- a priori error estimates, while we investigate the optimal convergence rates numerically. This approach recovers and integrates the flexibility and superiority of the discontinuous Galerkin methods for fluids whenever geometrical deformations are taking place by degenerating the edges, facets, of the polytopic elements only on the boundary, combined with the efficiency of the hp-version techniques based on arbitrarily shaped elements without requiring any mapping from a given reference frame.

Click here to read this post out
ID: 822580; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: