×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2303.09841v2 Announce Type: replace
Abstract: Group Anomaly Detection (GAD) identifies unusual pattern in groups where individual members might not be anomalous. This task is of major importance across multiple disciplines, in which also sequences like trajectories can be considered as a group. As groups become more diverse in heterogeneity and size, detecting group anomalies becomes challenging, especially without supervision. Though Recurrent Neural Networks are well established deep sequence models, their performance can decrease with increasing sequence lengths. Hence, this paper introduces GADformer, a BERT-based model for attention-driven GAD on trajectories in unsupervised and semi-supervised settings. We demonstrate how group anomalies can be detected by attention-based GAD. We also introduce the Block-Attention-anomaly-Score (BAS) to enhance model transparency by scoring attention patterns. In addition to that, synthetic trajectory generation allows various ablation studies. In extensive experiments we investigate our approach versus related works in their robustness for trajectory noise and novelties on synthetic data and three real world datasets.

Click here to read this post out
ID: 822585; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: