×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2303.13226v2 Announce Type: replace
Abstract: We present LearnedFTL, a new on-demand page-level flash translation layer (FTL) design, which employs learned indexes to improve the address translation efficiency of flash-based SSDs. The first of its kind, it reduces the number of double reads induced by address translation in random read accesses. LearnedFTL proposes three key techniques: an in-place-update linear model to build learned indexes efficiently, a virtual PPN representation to obtain contiguous PPNs for sorted LPNs, and a group-based allocation and model training via GC/rewrite strategy to reduce the training overhead. By tightly integrating the aforementioned key techniques, LearnedFTL considerably speeds up address translation while reducing the number of flash read accesses caused by the address translation. Our extensive experiments on a FEMU-based prototype show that LearnedFTL can reduce up to 55.5\% address translation-induced double reads. As a result, LearnedFTL reduces the P99 tail latency by 2.9$\times$ $\sim$ 12.2$\times$ with an average of 5.5$\times$ and 8.2$\times$ compared to the state-of-the-art TPFTL and LeaFTL schemes, respectively.

Click here to read this post out
ID: 822586; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: